skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Doliva-Dolinsky, Amandine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present results from Identifying Dwarfs of MC Analog GalaxiEs (ID-MAGE), a survey aimed at identifying and characterizing unresolved satellite galaxies around 35 nearby LMC- and SMC-mass hosts (D = 4−10 Mpc). We use archival DESI Legacy Survey imaging data and perform an extensive search for dwarf satellites, extending out to a radius of 150 kpc (∼Rvir). We identify 355 candidate satellite galaxies, including 264 new discoveries. Extensive tests with injected galaxies demonstrate that the survey is complete down toMV ∼ −9.0 (assuming the distance of the host) andμ0,V ∼ 26 mag arcsec−2(assuming ann = 1 Sérsic profile). We perform consistent photometry, via Sérsic profile fitting, on all candidates and have initiated a comprehensive follow-up campaign to confirm and characterize candidates. Through a systematic visual inspection campaign, we classify the top candidates as high-likelihood satellites. On average, we find 4.0 ± 1.4 high-likelihood candidate satellites per LMC-mass host and 2.1 ± 0.6 per SMC-mass host, which is within the range predicted by cosmological models. We use this sample to establish upper and lower estimates on the satellite luminosity function of LMC-/SMC-mass galaxies. ID-MAGE nearly triples the number of low-mass galaxies surveyed for satellites with well-characterized completeness limits, providing a unique data set to explore small-scale structure and dwarf galaxy evolution around low-mass hosts in diverse environments. 
    more » « less
    Free, publicly-accessible full text available August 5, 2026
  2. Abstract We present deep Magellan+Megacam imaging of Centaurus I (Cen I) and Eridanus IV (Eri IV), two recently discovered Milky Way ultrafaint satellites. Our data reach ∼2–3 mag deeper than the discovery data from the DECam Local Volume Exploration Survey. We use these data to constrain their distances, structural properties (e.g., half-light radii, ellipticity, and position angle), and luminosities. We investigate whether these systems show signs of tidal disturbance and identify new potential member stars using Gaia EDR3. Our deep color–magnitude diagrams show that Cen I and Eri IV are consistent with an old (τ∼ 13.0 Gyr) and metal-poor ([Fe/H] ≤ −2.2) stellar population. We find Cen I to have a half-light radius of r h = 2. 60 ± 0. 30 (90.6 ± 11 pc), an ellipticity ofϵ= 0.36 ± 0.05, a distance ofD= 119.8 ± 4.1 kpc (m−M= 20.39 ± 0.08 mag), and an absolute magnitude ofMV= −5.39 ± 0.19. Similarly, Eri IV has r h = 3. 24 ± 0. 48 (65.9 ± 10 pc),ϵ= 0.26 ± 0.09,D= 69.9 ± 3.6 kpc (m−M= 19.22 ± 0.11 mag), andMV= −3.55 ± 0.24. These systems occupy a space on the size–luminosity plane consistent with other known Milky Way dwarf galaxies, which supports the findings from our previous spectroscopic follow-up. Cen I has a well-defined morphology that lacks any clear evidence of tidal disruption, whereas Eri IV hosts a significant extended feature with multiple possible interpretations. 
    more » « less
    Free, publicly-accessible full text available May 7, 2026
  3. Abstract We report the results of the deepest search to date for dwarf galaxies around NGC 3109, a barred spiral galaxy with a mass similar to that of the Small Magellanic Cloud (SMC), using a semiautomated search method. Using the Dark Energy Camera, we survey a region covering a projected distance of ∼70 kpc of NGC 3109 (D= 1.3 Mpc,Rvir∼ 90 kpc,M∼ 108M*) as part of the MADCASH and DELVE-DEEP programs. We introduce a newly developed semiresolved search method, used alongside a resolved search, to identify crowded dwarf galaxies around NGC 3109. Using both approaches, we successfully recover the known satellites Antlia and Antlia B. We identified a promising candidate, which was later confirmed to be a background dwarf through deep follow-up observations. Our detection limits are well defined, with the sample ∼80% complete down toMV∼ −8.0, and include detections of dwarf galaxies as faint asMV∼ −6.0. This is the first comprehensive study of a satellite system through resolved stars around an SMC mass host. Our results show that NGC 3109 has more bright (MV∼ −9.0) satellites than the mean predictions from cold dark matter models, but well within the host-to-host scatter. A larger sample of LMC/SMC-mass hosts is needed to test whether or not the observations are consistent with current model expectations. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  4. Abstract We present deep optical observations of the stellar halo of NGC 300, an LMC-mass galaxy, acquired with the DEEP subcomponent of the DECam Local Volume Exploration survey using the 4 m Blanco Telescope. Our resolved star analysis reveals a large, low surface brightness stellar stream (MV ∼ −8.5; [Fe/H] = −1.4 ± 0.15) extending more than 40 kpc north from the galaxy’s center. We also find other halo structures, including potentially an additional stream wrap to the south, which may be associated with the main stream. The morphology and derived low metallicities of the streams and shells discovered surrounding NGC 300 are highly suggestive of a past accretion event. Assuming a single progenitor, the accreted system is approximately Fornax-like in luminosity, with an inferred mass ratio to NGC 300 of approximately 1:15. We also present the discovery of a metal-poor globular cluster (GC) (Rproj = 23.3 kpc;MV = −8.99 ± 0.16; [Fe/H] ≈ −1.6 ± 0.6) in the halo of NGC 300, the furthest identified GC associated with NGC 300. The stellar structures around NGC 300 represent the richest features observed in a Magellanic Cloud analog to date, strongly supporting the idea that accretion and subsequent disruption is an important mechanism in the assembly of dwarf galaxy stellar halos. 
    more » « less
    Free, publicly-accessible full text available March 26, 2026
  5. Abstract We report the discovery of three faint and ultrafaint dwarf galaxies—Sculptor A, Sculptor B, and Sculptor C—in the direction of NGC 300 (D= 2.0 Mpc), a Large Magellanic Cloud–mass galaxy. Deep ground-based imaging with Gemini/GMOS resolves all three dwarf galaxies into stars, each displaying a red giant branch indicative of an old, metal-poor stellar population. No young stars or Higas are apparent, and the lack of a GALEX UV detection suggests that all three systems are quenched. Sculptor C (D= 2.04 0.13 + 0.10 Mpc;MV=  −9.1 ± 0.1 mag orLV= (3.7 0.3 + 0.4 ) × 105L) is consistent with being a satellite of NGC 300. Sculptor A (D= 1.35 0.08 + 0.22 Mpc;MV= −6.9 ± 0.3 mag orLV= (5 1 + 1 ) × 104L) is likely in the foreground of NGC 300 and at the extreme edge of the Local Group, analogous to the recently discovered ultrafaint Tucana B in terms of its physical properties and environment. Sculptor B (D= 2.48 0.24 + 0.21 Mpc;MV= −8.1 ± 0.3 mag orLV= (1.5 0.4 + 0.5 ) × 105L) is likely in the background, but future distance measurements are necessary to solidify this statement. It is also of interest due to its quiescent state and low stellar mass. Both Sculptor A and B are ≳2–4rvirfrom NGC 300 itself. The discovery of three dwarf galaxies in isolated or low-density environments offers an opportunity to study the varying effects of ram-pressure stripping, reionization, and internal feedback in influencing the star formation history of the faintest stellar systems. 
    more » « less
    Free, publicly-accessible full text available December 10, 2025
  6. Abstract We present the first comprehensive census of the satellite population around a Large Magellanic Cloud stellar-mass galaxy, as part of the Magellanic Analog Dwarf Companions and Stellar Halos (MADCASH) survey. We have surveyed NGC 2403 (D= 3.0 Mpc) with the Subaru/Hyper Suprime-Cam imager out to a projected radius of 90 kpc (with partial coverage extending out to ∼110 kpc, or ∼80% of the virial radius of NGC 2403), resolving stars in the uppermost ∼2.5 mag of its red giant branch. By looking for stellar overdensities in the red giant branch spatial density map, we identify 149 satellite candidates, of which only the previously discovered MADCASH J074238+65201-dw is a bona fide dwarf, together with the more massive and disrupting satellite DDO 44. We carefully assess the completeness of our search via injection of artificial dwarf galaxies into the images, finding that we are reliably sensitive to candidates down toMV∼ −7.5 mag (and somewhat sensitive to even fainter satellites). A comparison of the satellite luminosity function of NGC 2403 down to this magnitude limit to theoretical expectations shows overall good agreement. This is the first of a full sample of 11 Magellanic Cloud–mass host galaxies we will analyze, creating a statistical sample that will provide the first quantitative constraints on hierarchical models of galaxy formation around low-mass hosts. 
    more » « less
  7. Abstract We report the discovery of Corvus A, a low-mass, gas-rich galaxy at a distance of approximately 3.5 Mpc, identified in DR10 of the Dark Energy Camera Legacy Imaging Survey during the initial phase of our ongoing SEmi-Automated Machine LEarning Search for Semi-resolved galaxies (SEAMLESS). Jansky Very Large Array observations of Corvus A detect Hiline emission at a radial velocity of 523 ± 2 km s−1. Magellan/Megacam imaging reveals an irregular and complex stellar population with both young and old stars. We detect UV emission in Neil Gehrels Swift observations, indicative of recent star formation. However, there are no signs of Hiiregions in Hαimaging from Steward Observatory’s Kuiper telescope. Based on the Megacam color–magnitude diagram we measure the distance to Corvus A via the tip of the red giant branch standard candle as 3.48 ± 0.24 Mpc. This makes Corvus A remarkably isolated, with no known galaxy within ∼1 Mpc. Based on this distance, we estimate the Hiand stellar mass of Corvus A to be log M H I / M = 6.59 and log M * / M = 6.0 , respectively. Although there are some signs of rotation, the Hidistribution of Corvus A appears to be close to face on, analogous to that of Leo T, and we therefore do not attempt to infer a dynamical mass from its Hiline width. Higher-resolution synthesis imaging is required to confirm this morphology and to draw robust conclusions from its gas kinematics. 
    more » « less
  8. Abstract We report the first comprehensive census of the satellite dwarf galaxies around NGC 55 (2.1 Mpc) as a part of the DECam Local Volume Exploration DEEP (DELVE-DEEP) survey. NGC 55 is one of four isolated, Magellanic analogs in the Local Volume around which DELVE-DEEP aims to identify faint dwarfs and other substructures. We employ two complementary detection methods: one targets fully resolved dwarf galaxies by identifying them as stellar overdensities, while the other focuses on semiresolved dwarf galaxies, detecting them through shredded unresolved light components. As shown through extensive tests with injected galaxies, our search is sensitive to candidates down toMV ≲ −6.6 and surface brightnessμ ≲ 28.5 mag arcsec2, and ∼80% complete down toMV ≲ −7.8. We do not report any new confirmed satellites beyond two previously known systems, ESO 294–010 and NGC 55-dw1. We construct the satellite luminosity function of NGC 55 and find it to be consistent with the predictions from cosmological simulations. As one of the first complete luminosity functions for a Magellanic analog, our results provide a glimpse of the constraints on low-mass-host satellite populations that will be further explored by upcoming surveys, such as the Vera C. Rubin Observatory’s Legacy Survey of Space and Time. 
    more » « less